42 research outputs found

    Modification of pfap2μ and pfubp1 Markedly Reduces Ring-Stage Susceptibility of Plasmodium falciparum to Artemisinin In Vitro.

    Get PDF
    Management of uncomplicated malaria worldwide is threatened by the emergence in Asia of Plasmodium falciparum carrying variants of the pfk13 locus and exhibiting reduced susceptibility to artemisinin. Mutations in two other genes, ubp1 and ap2μ, are associated with artemisinin resistance in rodent malaria and with clinical failure of combination therapy in African malaria patients. Transgenic P. falciparum clones, each carrying orthologues of mutations in pfap2μ and pfubp1 associated with artemisinin resistance in Plasmodium chabaudi, were derived by Cas9 gene editing. Susceptibility to artemisinin and other antimalarial drugs was determined. Following exposure to 700 nM dihydroartemisinin in the ring-stage survival assay, we found strong evidence that transgenic parasites expressing the I592T variant (11% survival), but not the S160N variant (1% survival), of the AP2μ adaptin subunit were significantly less susceptible than the parental wild-type parasite population. The V3275F variant of UBP1, but not the V3306F variant, also displayed reduced susceptibility to dihydroartemisinin (8.5% survival versus 0.5% survival). AP2μ and UBP1 variants did not elicit reduced susceptibility to 48 h of exposure to artemisinin or to other antimalarial drugs. Therefore, variants of the AP2 adaptor complex μ-subunit and of the ubiquitin hydrolase UBP1 reduce in vitro artemisinin susceptibility at the early ring stage in P. falciparum These findings confirm the existence of multiple pathways to perturbation of either the mode of action of artemisinin, the parasite's adaptive mechanisms of resistance, or both. The cellular role of UBP1 and AP2μ in Plasmodium parasites should now be elucidated

    Comparison of the susceptibility of Plasmodium knowlesi and Plasmodium falciparum to antimalarial agents.

    Get PDF
    BACKGROUND: The simian malaria parasite Plasmodium knowlesi is now a well-recognized pathogen of humans in South-East Asia. Clinical infections appear adequately treated with existing drug regimens, but the evidence base for this practice remains weak. The availability of P. knowlesi cultures adapted to continuous propagation in human erythrocytes enables specific studies of in vitro susceptibility of the species to antimalarial agents, and could provide a surrogate system for testing investigational compounds against Plasmodium vivax and other non-Plasmodium falciparum infections that cannot currently be propagated in vitro. OBJECTIVES: We sought to optimize protocols for in vitro susceptibility testing of P. knowlesi and to contrast outputs with those obtained for P. falciparum under comparable test conditions. METHODS: Growth monitoring of P. knowlesi in vitro was by DNA quantification using a SYBR Green fluorescent assay or by colorimetric detection of the lactate dehydrogenase enzyme. For comparison, P. falciparum was tested under conditions identical to those used for P. knowlesi. RESULTS: The SYBR Green I assay proved the most robust format over one (27 h) or two (54 h) P. knowlesi life cycles. Unexpectedly, P. knowlesi displays significantly greater susceptibility to the dihydrofolate reductase inhibitors pyrimethamine, cycloguanil and trimethoprim than does P. falciparum, but is less susceptible to the selective agents blasticidin and DSM1 used in parasite transfections. Inhibitors of dihydroorotate dehydrogenase also demonstrate lower activity against P. knowlesi. CONCLUSIONS: The fluorescent assay system validated here identified species-specific P. knowlesi drug susceptibility profiles and can be used for testing investigational compounds for activity against non-P. falciparum malaria

    Transient temperature fluctuations severely decrease P. falciparum susceptibility to artemisinin in vitro.

    Get PDF
    Clinical studies suggest that outcomes for hospitalised malaria patients can be improved by managed hypothermia during treatment. We examined the impact of short pulses of low temperature on ring-stage susceptibility of Plasmodium falciparum to artemisinin in vitro. The usually artemisinin-sensitive clone 3D7 exhibited substantially reduced ring-stage susceptibility to a 4-h pulse of 700 nM dihydro-artemisinin administered during a 5-h pulse of low temperature down to 17 °C. Parasite growth through the subsequent asexual cycle was not affected by the temperature pulse. Chloroquine and pyronaridine susceptibility, in a standard 48-h test, was not affected by brief exposures to low temperature. Fever-like temperature pulses up to 40 °C were also accompanied by enhanced ring-stage survival of 700 nM artemisinin pulses, but parasite growth was generally attenuated at this temperature. We discuss these findings in relation to the possible activation of parasite stress responses, including the unfolded protein response, by hypo- or hyper-thermic conditions. Physiological states may need to be considered in artemisinin-treated P. falciparum patients

    Culture-adapted Plasmodium falciparum isolates from UK travellers: in vitro drug sensitivity, clonality and drug resistance markers.

    Get PDF
    BACKGROUND: The screening of lead compounds against in vitro parasite cultures is an essential step in the development of novel anti-malarial drugs, but currently relies on laboratory parasite lines established in vitro during the last century. This study sought to establish in continuous culture a series of recent Plasmodium falciparum isolates to represent the current parasite populations in Africa, all of which are now exposed to artemisinin combination therapy. METHODS: Pre-treatment P. falciparum isolates were obtained in EDTA, and placed into continuous culture after sampling of DNA. One post-treatment blood sample was also collected for each donor to monitor parasite clonality during clearance in vivo. IC₅₀ estimates were obtained for 11 anti-malarial compounds for each established parasite line, clonal multiplicity measured in vivo and in vitro, and polymorphic sites implicated in parasite sensitivity to drugs were investigated at the pfmdr1, pfcrt, pfdhfr, pfdhps and pfap2mu loci before and after treatment, and in the cultured lines. RESULTS: Plasmodium falciparum isolates from seven malaria patients with recent travel to three West African and two East African countries were successfully established in long-term culture. One of these, HL1211, was from a patient with recrudescent parasitaemia 14 days after a full course of artemether-lumefantrine. All established culture lines were shown to be polyclonal, reflecting the in vivo isolates from which they were derived, and at least two lines reliably produce gametocytes in vitro. Two lines displayed high chloroquine IC₅₀ estimates, and carried the CVIET haplotype at codons 72-76, whereas the remaining five lines carried the CVMNK haplotype and were sensitive in vitro. All were sensitive to the endoperoxides dihydroartemisinin and OZ277, but IC₅₀ estimates for lumefantrine varied, with the least sensitive parasites carrying pfmdr1 alleles encoding Asn at codon 86. CONCLUSIONS: This study describes the establishment in continuous culture, in vitro drug sensitivity testing and molecular characterization of a series of multiclonal P. falciparum isolates taken directly from UK malaria patients following recent travel to various malaria-endemic countries in Africa. These "HL" isolates are available as an open resource for studies of drug response, antigenic diversity and other aspects of parasite biology

    Ex vivo susceptibility to new antimalarial agents differs among human-infecting Plasmodium species.

    Get PDF
    Several promising antimalarial drugs are currently being tested in human trials, such as artefenomel, cipargamin, ferroquine and ganaplacide. Many of these compounds were identified using high throughput screens against a single species of human malaria, Plasmodium falciparum, under the assumption that effectiveness against all malaria species will be similar, as has been observed for other antimalarial drugs. However, using our in vitro adapted line, we demonstrated recently that P. knowlesi is significantly less susceptible than P. falciparum to some new antimalarial drugs (e.g., cipargamin and DSM265), and more susceptible to others (e.g., ganaplacide). There is, therefore, an urgent need to determine the susceptibility profile of all human malaria species to the current generation of antimalarial compounds. We obtained ex vivo malaria samples from travellers returning to the United Kingdom and, using the [3H]hypoxanthine incorporation method, compared susceptibility to select established and experimental antimalarial agents among all major human infective Plasmodium species. We demonstrate that P. malariae and P. ovale spp. are significantly less susceptible than P. falciparum to cipargamin, DSM265 and AN13762, but are more susceptible to ganaplacide. Preliminary ex vivo data from single isolates of P. knowlesi and P. vivax demonstrate a similar profile. Our findings highlight the need to ensure cross species susceptibility profiles are determined early in the drug development pipeline. Our data can also be used to inform further drug development, and illustrate the utility of the P. knowlesi in vitro model as a scalable approach for predicting the drug susceptibility of non-falciparum malaria species in general

    Verapamil-Sensitive Transport of Quinacrine and Methylene Blue via the Plasmodium falciparum Chloroquine Resistance Transporter Reduces the Parasite's Susceptibility to these Tricyclic Drugs.

    Get PDF
    BACKGROUND: It is becoming increasingly apparent that certain mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) alter the parasite's susceptibility to diverse compounds. Here we investigated the interaction of PfCRT with 3 tricyclic compounds that have been used to treat malaria (quinacrine [QC] and methylene blue [MB]) or to study P. falciparum (acridine orange [AO]). METHODS: We measured the antiplasmodial activities of QC, MB, and AO against chloroquine-resistant and chloroquine-sensitive P. falciparum and determined whether QC and AO affect the accumulation and activity of chloroquine in these parasites. We also assessed the ability of mutant (PfCRT(Dd2)) and wild-type (PfCRT(D10)) variants of the protein to transport QC, MB, and AO when expressed at the surface of Xenopus laevis oocytes. RESULTS: Chloroquine resistance-conferring isoforms of PfCRT reduced the susceptibility of the parasite to QC, MB, and AO. In chloroquine-resistant (but not chloroquine-sensitive) parasites, AO and QC increased the parasite's accumulation of, and susceptibility to, chloroquine. All 3 compounds were shown to bind to PfCRT(Dd2), and the transport of QC and MB via this protein was saturable and inhibited by the chloroquine resistance-reverser verapamil. CONCLUSIONS: Our findings reveal that the PfCRT(Dd2)-mediated transport of tricyclic antimalarials reduces the parasite's susceptibility to these drugs

    Novel Endochin-Like Quinolones Exhibit Potent In Vitro Activity against Plasmodium knowlesi but Do Not Synergize with Proguanil.

    Get PDF
    Quinolones, such as the antimalarial atovaquone, are inhibitors of the malarial mitochondrial cytochrome bc1 complex, a target critical to the survival of both liver- and blood-stage parasites, making these drugs useful as both prophylaxis and treatment. Recently, several derivatives of endochin have been optimized to produce novel quinolones that are active in vitro and in animal models. While these quinolones exhibit potent ex vivo activity against Plasmodium falciparum and Plasmodium vivax, their activity against the zoonotic agent Plasmodium knowlesi is unknown. We screened several of these novel endochin-like quinolones (ELQs) for their activity against P. knowlesiin vitro and compared this with their activity against P. falciparum tested under identical conditions. We demonstrated that ELQs are potent against P. knowlesi (50% effective concentration, <117?nM) and equally effective against P. falciparum We then screened selected quinolones and partner drugs using a longer exposure (2.5 life cycles) and found that proguanil is 10-fold less potent against P. knowlesi than P. falciparum, while the quinolones demonstrate similar potency. Finally, we used isobologram analysis to compare combinations of the ELQs with either proguanil or atovaquone. We show that all quinolone combinations with proguanil are synergistic against P. falciparum However, against P. knowlesi, no evidence of synergy between proguanil and the quinolones was found. Importantly, the combination of the novel quinolone ELQ-300 with atovaquone was synergistic against both species. Our data identify potentially important species differences in proguanil susceptibility and in the interaction of proguanil with quinolones and support the ongoing development of novel quinolones as potent antimalarials that target multiple species

    The Mu subunit of Plasmodium falciparum clathrin-associated adaptor protein 2 modulates in vitro parasite response to artemisinin and quinine.

    Get PDF
    The emergence of drug-resistant parasites is a serious threat faced by malaria control programs. Understanding the genetic basis of resistance is critical to the success of treatment and intervention strategies. A novel locus associated with antimalarial resistance, ap2-mu (encoding the mu chain of the adaptor protein 2 [AP2] complex), was recently identified in studies on the rodent malaria parasite Plasmodium chabaudi (pcap2-mu). Furthermore, analysis in Kenyan malaria patients of polymorphisms in the Plasmodium falciparum ap2-mu homologue, pfap2-mu, found evidence that differences in the amino acid encoded by codon 160 are associated with enhanced parasite survival in vivo following combination treatments which included artemisinin derivatives. Here, we characterize the role of pfap2-mu in mediating the in vitro antimalarial drug response of P. falciparum by generating transgenic parasites constitutively expressing codon 160 encoding either the wild-type Ser (Ser160) or the Asn mutant (160Asn) form of pfap2-mu. Transgenic parasites carrying the pfap2-mu 160Asn allele were significantly less sensitive to dihydroartemisinin using a standard 48-h in vitro test, providing direct evidence of an altered parasite response to artemisinin. Our data also provide evidence that pfap2-mu variants can modulate parasite sensitivity to quinine. No evidence was found that pfap2-mu variants contribute to the slow-clearance phenotype exhibited by P. falciparum in Cambodian patients treated with artesunate monotherapy. These findings provide compelling evidence that pfap2-mu can modulate P. falciparum responses to multiple drugs. We propose that this gene should be evaluated further as a potential molecular marker of antimalarial resistance

    Cation ATPase (ATP4) Orthologue Replacement in the Malaria Parasite Plasmodium knowlesi Reveals Species-Specific Responses to ATP4-Targeting Drugs.

    Get PDF
    Several unrelated classes of antimalarial compounds developed against Plasmodium falciparum target a parasite-specific P-type ATP-dependent Na+ pump, PfATP4. We have previously shown that other malaria parasite species infecting humans are less susceptible to these compounds. Here, we generated a series of transgenic Plasmodium knowlesi orthologue replacement (OR) lines in which the endogenous pkatp4 locus was replaced by a recodonized P. knowlesi atp4 (pkatp4) coding region or the orthologous coding region from P. falciparum, Plasmodium malariae, Plasmodium ovale subsp. curtisi, or Plasmodium vivax. Each OR transgenic line displayed a similar growth pattern to the parental P. knowlesi line. We found significant orthologue-specific differences in parasite susceptibility to three chemically unrelated ATP4 inhibitors, but not to comparator drugs, among the P. knowlesi OR lines. The PfATP4OR transgenic line of P. knowlesi was significantly more susceptible than our control PkATP4OR line to three ATP4 inhibitors: cipargamin, PA21A092, and SJ733. The PvATP4OR and PmATP4OR lines were similarly susceptible to the control PkATP4OR line, but the PocATP4OR line was significantly less susceptible to all ATP4 inhibitors than the PkATP4OR line. Cipargamin-induced inhibition of Na+ efflux was also significantly greater with the P. falciparum orthologue of ATP4. This confirms that species-specific susceptibility differences previously observed in ex vivo studies of human isolates are partly or wholly enshrined in the primary amino acid sequences of the respective ATP4 orthologues and highlights the need to monitor efficacy of investigational malaria drugs against multiple species. P. knowlesi is now established as an important in vitro model for studying drug susceptibility in non-falciparum malaria parasites. IMPORTANCE Effective drugs are vital to minimize the illness and death caused by malaria. Development of new drugs becomes ever more urgent as drug resistance emerges. Among promising compounds now being developed to treat malaria are several unrelated molecules that each inhibit the same protein in the malaria parasite-ATP4. Here, we exploited the genetic tractability of P. knowlesi to replace its own ATP4 genes with orthologues from five human-infective species to understand the drug susceptibility differences among these parasites. We previously estimated the susceptibility to ATP4-targeting drugs of each species using clinical samples from malaria patients. These estimates closely matched those of the corresponding "hybrid" P. knowlesi parasites carrying introduced ATP4 genes. Thus, species-specific ATP4 inhibitor efficacy is directly determined by the sequence of the gene. Our novel approach to understanding cross-species susceptibility/resistance can strongly support the effort to develop antimalarials that effectively target all human malaria parasite species

    pfk13-Independent Treatment Failure in Four Imported Cases of Plasmodium falciparum Malaria Treated with Artemether-Lumefantrine in the United Kingdom.

    Get PDF
    We present case histories of four patients treated with artemether-lumefantrine for falciparum malaria in UK hospitals in 2015 to 2016. Each subsequently presented with recurrent symptoms and Plasmodium falciparum parasitemia within 6 weeks of treatment with no intervening travel to countries where malaria is endemic. Parasite isolates, all of African origin, harbored variants at some candidate resistance loci. No evidence of pfk13-mediated artemisinin resistance was found. Vigilance for signs of unsatisfactory antimalarial efficacy among imported cases of malaria is recommended
    corecore